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Abstract

An experimental model of an elastic cable/mass hanging at in-phase or out-of-phase vertically moving supports is
considered. System parameters are adjusted to produce two different conditions of multiple internal resonance. Non-
regular dynamics are analyzed in various frequency ranges including meaningful external resonance conditions. At-
tention is devoted to characterization of system dimensionality in terms of both time and spatial complexity. The aims
of this paper are (i) to give a general overview of the richness and robustness of different (quasiperiodic and homoclinic)
bifurcation scenarios to chaos in various regions of the control parameter space, (ii) to characterize steady nonregular
response through delay-embedding technique for attractor reconstruction and proper orthogonal decomposition of
spatio-temporal flow and (iii) to identify spatial configuration variables (experimental eigenfunctions) contributing
mostly to nonregular dynamics, thus obtaining hints about possible reduced models for reproducing complex regimes.
System dimensionality will be evaluated both by relating the dimension of attractors to the dimension of the linear
phase space, and from the dominating proper orthogonal modes. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In applied solid mechanics, when dealing with multidegrees-of-freedom or continuous systems under-
going finite amplitude vibrations, there is a strong possibility of response regimes involving several spatial
modes in either regular or complex nonlinear behavior. Reliable and complete descriptions of many pos-
sible regimes in control parameter space have to be obtained through systematic experimental investiga-
tions on physical models of the considered system. Rich and varied response charts exhibiting several
regions of different classes of motion are usually obtained, depending also on the realization of meaningful
external and/or internal, and possibly multiple, resonance conditions.
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Quasiperiodic and chaotic motions are seen to occur mostly in between regions of clearly dominating
low-dimensional regular responses. One major effort in experimental analysis consists of properly char-
acterizing the bifurcation mechanisms leading to complex attractors, and the attractors themselves, from
the point of view of the dimension of the dynamics. Indeed, investigating the possible finite dimensionality
in the complex dynamics of potentially infinite-dimensional systems, and detecting minimum numbers and
features of configuration variables actually needed to describe such complex motions, are important
questions in nonlinear dynamics (Cusumano et al., 1994; Steindl et al., 1999; Georgiou and Schwartz,
1999).

Dimensionality has to be characterized in terms of both time complexity and spatial complexity. The
former characterization is accomplished by calculating invariant measures of the dynamics (including
strangeness and chaoticity) through the delay embedding procedure (Packard et al., 1980; Takens, 1981;
Mané, 1981; Sauer et al., 1991): this is done in a reconstructed phase space being in a one-to-one (to-
pological and dynamical) correspondence, under certain reconstruction conditions, with the real, high-
dimensional, but inaccessible phase space. The embedding procedure is of special interest just for allowing
reliable estimations of system dimensionality: indeed, it gives indications on the actual number of degrees-
of-freedom (dof) taking meaningful part in the system nonlinear response (Eckmann and Ruelle, 1985).

Spatial complexity, on the other hand, is characterized by identifying the configurations that are most
visited, on average, during a spatio-temporal evolution. This is best done through the proper orthogonal
decomposition (POD) or Karhunen-Loeve procedure (Holmes et al., 1996) based on spatial coherence
analysis. The POD allows us to characterize the response not only in terms of the number of dof involved
(as per the embedding procedure) but also with respect to their mechanical meaning (spatial shape).
Moreover, it furnishes the optimal basis to decompose the spatial flow, and thus a suitable basis for
projecting a continuous theoretical model through some analytical reduction technique.

The present paper illustrates and discusses the above mentioned topics with reference to elastic mono-
dimensional systems in solid and structural mechanics. The application of POD is based on the availability
of spatially contemporaneous measures, and so a distinction has to made between systems with bending
stiffness (beams and arches) and flexible systems with negligible bending stiffness, such as suspended cables.
Contact measurement sensors (e.g. accelerometers) can be used in the former case, while no-contact and
currently expensive optical/laser sensors resulting in very low number of synchronous measures, are re-
quired in the latter case. Yet, flexible systems are of special interest, owing to the combined effect of
flexibility, which naturally entails involved 3D responses, and possibly high modal density enhancing in-
volvement of several modes in highly coupled nonlinear responses.

In this paper, an experimental model of elastic cable with concentrated masses hanging from two
supports moving vertically and sinusoidally in-phase or out-of-phase is considered (Fig. 1) (Rega et al.,
1997). For relatively low frequency of the support motion, a reliable model of bare suspended cable is
realized. The in-plane (vertical) and out-of-plane (horizontal) cable/mass linear modes are labeled Vn and
Hn, respectively (n = odd, symmetric; n = even, antisymmetric) (Fig. 1(a)). The mechanical and geomet-
rical properties of the system realize a condition of 2:2:1 multiple internal resonance involving the fre-
quencies w(-) of the first antisymmetric in-plane (V2) and out-of-plane (H2) modes, and of the first
symmetric out-of-plane (H1) mode.

Previous papers, mainly devoted to characterization of regular response (Rega et al., 1997; Benedettini
and Rega, 1997) furnished local and global descriptions of the system dynamics. Overall response charts in
excitation parameter space were obtained, showing the existence of quite large regions of quasiperiodic and
chaotic motion for forcing frequencies close to meaningful external resonance conditions. In-depth analyses
of a meaningful scenario to chaos occurring in a specific region of parameter space have then been made in
(Alaggio and Rega, 2000a). General aims of the present work are instead (i) to give a general overview of
the richness and robustness of bifurcation scenarios in various regions, (ii) to characterize different
mechanisms of transition to nonregular dynamics and (iii) to identify possible reduced models for complex
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Fig. 1. (a) Sketch of the mechanical model with its parameters and dynamical characteristics. (b) The hanged nylon wire carrying eight
concentrated masses, the shakers and the two movable optical cameras.

regimes from experimental observations, thus obtaining hints for the construction of corresponding min-
imal theoretical models able to reproduce those behaviors.

In the framework of spatio-temporal characterization of most robust classes of motion, particular at-
tention will be devoted (i) to characterize the relevant steady attractors in terms of dimensionality,
strangeness, and possible chaoticity and (i1) to identify the experimental eigenfunctions (proper orthogonal
modes, POMs) mostly contributing to nonregular dynamics, and their mechanical meaning.

Besides Poincaré map inspection and power spectra analysis, information about dimension of quasi-
periodic and chaotic attractors will be obtained from correlation dimension evaluations (Grassberger
and Procaccia, 1983) carried out on time-delayed reconstructed phase spaces using one or two simulta-
neous experimental time series (Abarbanel et al., 1993; Broomhead and King, 1986). Information about
chaoticity will be obtained through maximum Lyapunov exponent evaluations (Holzfuss and Lauterborn,
1989).

The investigated scenarios evolve in a potentially infinite-dimensional phase space. Attractors of same
dimension can of course lie on different manifolds: characterizing the invariant manifolds where the motion
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actually develops, with lower dynamical dimension, is thus of a major interest for reliable motion classi-
fication. In this respect, the bare attractor dimension criterion does not allow us to distinguish, e.g., between
a phase-locked periodic response involving several cable modes and a single-mode response. Therefore,
informations relevant to topology and dimension of invariant manifolds are also needed as a further im-
portant classification criterion of the dynamics.

The number and kind of participating configuration variables will be identified through orthogonal
decomposition of the discrete covariance matrix obtained from two-by-two spatial correlations of time laws
of two masses simultaneously acquired in stationary regime (Alaggio and Rega, 2000a).

System dimensionality will be tackled by following two approaches. On the one hand, it will be evaluated
on reconstructed attractors by relating their dimension to the dimension of the linear phase space. On the
other hand, it will ensue from the analysis of the spatial structure of nonregular flows and of the relevant
dominating experimental eigenfunctions.

System transition from regular to nonregular dynamics will be investigated in primary and 1/2-sub-
harmonic external resonances for either in-phase or out-of-phase support motion. Nonregular behavior of
the model will be seen to be very rich and varied. Nevertheless, the observed bifurcation paths will be traced
back to canonical scenarios of dynamical system theory, which are here sometimes simultaneous and
competing with each other. In particular, the quasiperiodic (3-tori breakdown) scenario will be discussed in
Section 2, first summarizing the results discussed in detail in (Alaggio and Rega, 2000a) for the sake of
completeness (Section 2.1), and then extending the description to a different external resonance condition
(Section 2.2). A scenario involving the global bifurcation of an homoclinic invariant set of the flow will be
analyzed in Section 3. In both cases, peculiar and/or persistent bifurcation features exhibited in each
considered case of resonance-zone/support-motion will be discussed. Robustness of the two scenarios as
observed for the reference experimental cable (labeled slacker cable in the following) will also be checked
towards variations of the system mechanical parameters, by considering a cable involving in a 2:2:1:2
resonance the first in-plane symmetric mode (V1), too: it corresponds to a cable at first crossover of the in-
plane symmetric and antisymmetric natural frequencies (Irvine and Caughey, 1974; Benedettini et al.,
1995). A general discussion of the highlighted bifurcation paths will conclude the paper (Section 4), with a
summary and comparison of indications obtained in terms of dimensionality and mechanical content of the
system dynamics.

2. Tori breakdown scenario

A bifurcation path in which chaos onsets following successive Hopf bifurcations increasing the attractor
dimension is typical of high-dimensional dissipative dynamical systems. Quasiperiodic transition to chaos
received interest in the last decades since the early works by Ruelle and Takens (1971) and by Newhouse
et al. (1978). The latter showed that chaotic attractors could arise from 3-T-quasiperiodic flows on 3-torus
as a consequence of arbitrarily small perturbations. Subsequent investigations by Grebogi et al. (1985)
cleared up the NRT scenario to be unlikely in typical physical systems. Numerical investigations about
transition to chaos of flows on 3-tori frequently showed the case in which destruction of torus precedes
incoming of chaos (Battelino et al., 1989; Giberti and Zanassi, 1993). More recently, Baesens et al. (1991)
furnished a detailed analysis of bifurcation behavior of flows on 3-tori, and Anishchenko et al. (1994)
investigated 3-torus breakdown numerically, extending previous results relevant to 2-torus. The quasipe-
riodic scenarios observed in the experimental cable/mass originate from 3-tori breakdown.

A series of homogenous classes of motion is singled out in the sequence of bifurcations to chaos. Their
classification is made based on topological dimension of manifolds where motion develops (growing, in
regular regime, from one to three-torus) and on correlation dimension of attractors (from one to three in
regular regime, coinciding with their local topological dimension; noninteger in chaotic regime). Accord-
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ingly, regular motions are labeled Pm[-M£k]: periodic, n'T-QPmi[-Mk]: quasiperiodic. Labels give information
on the attractor (m: periodicity, n: number of incommensurate frequencies equal to correlation dimension)
and manifold dimensions (equal to n for quasiperiodic — one for periodic — if not differently specified by & in
the case of partially or totally resonant, i.e., nonergodic, tori).

The QP scenario is responsible for transition to chaos in the slacker cable around nominal primary and
1/2-subharmonic resonance of the reference first in-plane antisymmetric mode V2 under in-phase and out-
of-phase support motion, respectively.

2.1. In-phase support motion, primary resonance

This case was analyzed in-depth in (Alaggio and Rega, 2000a) for the slacker cable. Herein, the main
features of the overall scenario are summarized, and meaningful aspects of spatio-temporal dimensional
characterization of most important classes of motion are presented.

The behavior shown by the system is very rich and varied showing regular and nonregular solutions, and
involved bifurcation mechanisms. All phenomena originate from participation to response of up to three
incommensurate frequencies. Upon developing of system dynamics on a 3-torus (as a consequence of two
Hopf bifurcations), further varying the control parameter entails 3T-quasiperiodic motion, torus break-
down with transition to chaos, and phase-locked quasiperiodic and high-periodicity solutions.

The bifurcation analysis is performed by varying the forcing frequency and keeping the forcing am-
plitude constant at a value 1.0 V (0.17 mm of support motion, cfr. relevant behavior chart, Fig. 2, in
Benedettini and Rega, 1997). The schematic bifurcation diagram in Fig. 2 shows the main phenomena
occurring in the range 1.155-1.250 of values of the adimensional frequency Q° = Q/w(V2), where the
complex dynamics develop, Q2 being the excitation frequency and w(V2), the natural frequency of the first
in-plane antisymmetric mode V2.

In the overall transition region, the model shows a close- and intertwined-sequence of regular and
nonregular response classes: (i) two-frequency quasiperiodic motions on two-dimensional manifolds (2T-
QP1), (i1) two-frequency phase-locked quasiperiodic motions on three-dimensional manifolds (2T-QP2-
M3), (iii) stable three-frequency quasiperiodic motions (3T-QPm), (iv) chaotic motions (CH1, CH2) and (v)
phase-locked periodic motions which are invariant sets of dimension 1 on three-dimensional manifolds
(Pm-M3).

Accordingly, various types of bifurcation occur: (i) Hopf bifurcation from 2T-quasiperiodic (on a 2-
torus-2T-QP1, as well as phase-locked on a 3-torus-2T-QP2-M3) to stable 3T-quasiperiodic (with two
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Fig. 2. Schematic bifurcation diagram (in-phase support motion, primary resonance). H: Hopf, PL: phase-locking, TB: torus
breakdown, SC: saddle cycle. The highlighted motion classes refer to periodic (Pm[-M3]), quasiperiodic (n"T-QPm[-M3]) and chaotic
(CH1, CH2) attractors.
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Table 1
An overview of the motion class characterization®
Attractor Dimension Modes
DC DS DE D-T No. Dp
POMs
In-phase support motion — primary resonance
Pl 1 2 1+3 1 1 (96.4%) 3 Vi
2T-QP1 2 3 2+5 2 2 (98.7%) 5 V1HI
2T-QP1 (fuzzy) 2.12 7 3+7 2 (98.1%) 5 V1HI
3 (98.9%) 7 V1HI H2
2T-QP2-M3 2 4 25 3R 3 (98.8%) 7 VIHI1H2
3T-QP1 (3T-QP2) 3 6 47 3 3 (98.4%) 7 V1HI1H2
P9-M3, P26-M3 1 3 1+3 3R 7 V1IHI1H2
CH2 345 9 4+9 3 (91.5%) 7 V1HI1H2
4 (94.2%) 9 VIHIH2H3
CHI1 2.27 7 3+7 2 (94.7%) 5 H1H2
3 (95.5%) 7 VIHI1H2

# Dc is the attractor estimated correlation dimension, Dy is the embedding dimension corresponding to dimension invariant satu-
ration, Dk is the expected embedding dimension variation range according to the relationship [Dc] < Dg < (2[Dc] + 1), where [ ] means
the nearest greater integer (the upper bound limit is given by the Mané theorem), D-T column shows the dimension of possibly
resonant (R) invariant tori if it exists, No. POMs column shows the number of experimental eigenfunctions identified and the relevant
signal power percentage, Dp is the dimension of phase-space required to display the main system dynamics, last column lists the natural
cable/mass modes to whom the experimental eigenfunctions can be referred.

topologically different 3T-QPm motions), (ii) transition from stable 3T-QPm to chaotic attractors through
3-tori breakdown and (iii) phase-locking of chaotic motion on 2T-QP2-M3 attractor, and of 3T-QPm
motions on high periodicity solutions.

The underlying outside period 1 response having correlation dimension Dc = 1 (Table 1) is dominated
by the first symmetric in-plane mode (V1) of the cable/mass, which is excited in primary resonance
(0*(V1) = 0(V1)/®(V2) = 1.32). This is clearly shown (Alaggio and Rega, 2000a) by the high signal
power content (¢ = 96.4%) pertaining to the relevant first POM, which has an in-plane component directly
referable to V1 while negligible out-of-plane component.

Involvement of further modes in the system dynamics within the frequency range is associated with
nearness of first symmetric out-of-plane mode H1(w*(H1) = 0.52) to its order 1/2-subharmonic resonance
and of first antisymmetric out-of-plane mode H2 (w*(H2) = 1.01) to its primary resonance (Rega et al.,
1997). Going inside the 1.155-1.25 range, a Hopf bifurcation — subcritical for increasing frequency and
supercritical for decreasing frequency, respectively — drives the asymptotic response onto a 2-torus, as
revealed by the Poincaré section inspection (Fig. 3(a)) and by the correlation dimension Dc = 2. The first
two POMs, normalized to unity, containing very high percentage (¢) of signal power, are shown in Fig.
3(b). Both in-plane and out-of-plane components are represented. The two main configuration variables
involved in the response are identified as the first symmetric out-of-plane (H1) and in-plane (V1) modes of
the cable.

The 2T-quasiperiodic motion identified by the label 2T-QP1 is stable only at the borders of the overall
frequency range. Going further inside this range, the system exhibits rich behavior due to the involvement
in the response of a third harmonic of incommensurate frequency with respect to the two ones already
involved in the 2T-quasiperiodic. In fact, with decreasing frequency, two successive secondary Hopf bi-
furcations drive the system to 3T-quasiperiodic attractors (3T-QP1 and 3T-QP1, respectively, with corre-
lation dimension D¢ = 3) followed by narrow stripes of intermittent phase locking on P9-M3 and P26-M3
periodic solutions and, finally, by wide ranges (CH1, CH2) of chaotic behavior.
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Fig. 3. (a) Poincaré section of the configuration space. (b) First two proper orthogonal modes.

The coherence analysis identifies the third configuration variable responsible for further incommensu-
rability as the first antisymmetric out-of-plane mode (H2). This mode plays an important role in all of the
different motion classes occurring on the two successive 3-tori.

Although involving same cable modes and having same attractor dimensions, the two classes (3T-QP1,
3T-QP2) of 3T-quasiperiodic responses are topologically different because they bifurcate from different 2T-
quasiperiodic motions: the first (2T-QP1) laying on an ergodic 2-torus, the second (2T-QP2) laying on a
partially resonant 3-torus. Their Poincaré maps are shown in Fig. 4(a) and (b).

The coherence analysis (POMs in Fig. 4(c)) highlights the role played in 3T-quasiperiodic motions by the
two out-of-plane modes (symmetric and antisymmetric): in particular, the power associated with the first
antisymmetric out-of-plane mode (H2) now exceeds the contribution of the first symmetric in-plane mode
(V).

a) b)
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©,=89.0% X=89.0% 0=6.9% 2=95.9% ©01=2.5% 2=98.4%

c)
Fig. 4. Poincaré sections relevant to (a) 3T-QP1 and (b) 3T-QP2 motion classes. (c) First three POMs relevant to 3T-QP1.
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The two chaotic regions (CH1, CH2) in the schematic bifurcation diagram of Fig. 2 are entered from
zones where the dynamics lie on a 3-torus. An experimental realization in region CH2 exhibits the con-
tinuous power spectrum and Poincaré map projection displayed in Fig. 5(a) and (b), respectively. A
dominant double period is observed, and the chaotic steady nature of the response is confirmed by both the
fractal value Dc = 3.45 and the positive value 0.108 calculated for the maximum Lyapunov exponent. A
realization in region CH1 (Fig. 5(c) and (d)) shows the dominant basic period and lower correlation di-
mension value (D¢ = 2.27), which increases however when moving towards the left boundary of the region.

The major spatial shapes identified through the coherence analysis are shown in Fig. 6(a) and (b) for the
CH2 and CHI case, respectively. The basic POMs corresponding to the first in-plane and out-of-plane
symmetric modes of the cable are again clearly recognizable, however, with exchanged relative power
content in the two cases. A third POM, very similar to the first antisymmetric out-of-plane mode takes,
also, meaningful part in the two responses with comparable power.

In the middle part of the experimental diagram, the motion belongs to a 2T-quasiperiodic attractor
(Dc = 2) of double period (2T-QP2-M3), the M3 label denoting a phase locking phenomenon on the 3-
torus. This phase-locked motion is characterized by a spatial flow to be decomposed in a linear phase space
using at least three configuration variables (M3) with phase-locked time coefficients. The relevant first three
POMs (¢, = 73.16%, ¢, = 20.75%, @5 = 4.45%) are referable to H1, V1 and H2, respectively.

Restricting ourselves to the regular regime, we can notice that in the frequency range 1.225-1.170, even if
the dimension of succeeding attractors varies from 1 to 3, the topological dimension of the associated
manifold is always three and the number of active configuration variables (having direct counterpart in the
space of cable natural modes) is always three, too.

=
> T
2 Y

P a— 1 L | 1 ! | | 1 H

0.0 0.2 0.4 0.6 08 1.0 1.2 1.4

Yw

a) b)

10 ‘ V

b et
R Y R AV N Nl
W\/\/, "‘hw/‘ h {
I S TR T R R BN R H
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Qw
c) d)

Fig. 5. (a) Power spectrum of orizontal component and (b) Poincaré section projection for CH2 motion. (¢, d) Same for CH1 motion.



G. Rega, R. Alaggio | International Journal of Solids and Structures 38 (2001) 2049-2068 2057

> > 2

Vi HI H2
¢ =76.5% % =76.5% ¢, =10.3% X =86.8% @3 =7.4% X =91.5%

HI H2 Vi
¢ =88.3% X = 88.3% 0= 6.4% % =94.7% ©3=0.8% = =95.5%
b)

Fig. 6. (a) First three POMs relevant to CH2 and (b) CHI motion classes.

Looking jointly at the results relevant to regular motions and chaos, the main role played by the an-
tisymmetric out-of-plane mode H2 in transition to chaos is clearly deduced. Of course, some higher modes
are involved in the fully developed chaotic attractor, too, though at lower power levels. It is worth noting
that, in a theoretical model accounting only for V1, H1 and H2 (as in Benedettini et al., 1995, where V2
also, here unnecessary, is considered), 91.5% of the flow total power would be captured.

Table 1 summarizes the quantitative and qualitative information concerned with dimensionality and
mechanical content of the classes of motion recognized in the quasiperiodic (torus breakdown) scenario to
chaos. Dimensionality is evaluated either directly on the reconstructed attractors or indirectly from the
results of spatial coherence analysis. In particular, comparison can be made between the upper bound
(Mané, 1981) given by the relation [Dc] < Dg < (2[Dc]+ 1) ([ ] means the nearest integer greater than)
involving the correlation dimension (D¢) and the embedding dimension (Dg), and the phase space di-
mension (Dp) in RN, evaluated, using POD results, as two times the number of identified POMs plus 1 (the
time).

In spite of the varied dynamics, the results obtained from systematic characterization of each class of
motion allow us to set the bifurcation behavior of the experimental system in the framework of quasipe-
riodic scenario to chaos and, more specifically, of the scenario of bifurcation of flow on 3-tori and its
breakdown (Baesens et al., 1991; Anishchenko et al., 1994; Alaggio and Rega, 2000a).

This scenario does not occur in the corresponding frequency range for the cable at nearly crossover
condition. Indeed, the closer internal resonance conditions of the latter prevent quasiperiodic couplings
from occurring, while often replacing them in parameter space with wider resonant periodic couplings, and
thus also the associated quasiperiodic transition to chaos from taking place.

2.2. Out-of-phase support motion, 1/2-subharmonic resonance. quasiperiodic scenario

The response chart relevant to the slacker cable under out-of-phase support motion at 1/2-subharmonic
resonance exhibits a wide range of nonregular regime (see Fig. 4 in Benedettini and Rega, 1997). The
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analysis demonstrates the system nonregular dynamics in this zone to be produced by two coexisting and
competing scenarios. In fact, two bifurcation paths to chaos differentiate themselves starting from the same
periodic motion class, an antisymmetric ballooning solution (P1-M2) involving — in primary resonance —
the second in-plane (V4) and out-of-plane (H4) antisymmetric modes of the cable.

The two scenarios produce attractors differing for dimension and spatial flow composition. The first one
involves a series of Hopf bifurcations (each one drawing a new configuration variable into the response)
and, again, it can be traced back to a torus-breakdown onset of chaos. The second scenario ends in a global
bifurcation involving an homoclinic invariant without involving further modes. The two coexixting sce-
narios are characterized by different robustness with respect to variations of cable geometric-mechanical
parameters, as it will be discussed later on. In this section, we show the main global results relevant to the
first, quasiperiodic, bifurcation path reported schematically in Fig. 7(a) obtained for a forcing amplitude
equal to 900 mV (0.2 mm of support motion) and the range 1.860-1.994 of values of the adimensional
frequency Q" = Q/w(V2). The coexisting homoclinic scenario (Fig. 7(b)) will be discussed in Section 3.

Generally speaking, a more uniformly nonregular behavior is herein observed with respect to the one
exhibited in the neighborhood of primary resonance condition with in-phase support motion. This is likely
due to the sudden involvement of an higher number of configuration variables in the complex response
originated from torus-breakdown, which prevents the system from exhibiting the complicated frame of
regular and nonregular solutions observed in that case.

For growing forcing frequency, two Hopf bifurcations occur, the first one giving rise to the 2T-quasi-
periodic response labeled 2T-QP(1) (and 2T-QP(2), after a jump to an higher amplitude response), the
second one bringing the dynamics from two- to three-dimensional torus (3T-QP). This manifold is then
soon broken, resulting in nonregular regime.

Two frequency ranges can be distinguished in the nonregular region, in each of which there is a rather
smooth increase of noninteger dimension of the chaotic attractor. They are separated by a threshold value
beyond which the dimension suddenly increases, thus highlighting the occurrence of a meaningful global
bifurcation in the system complex dynamics: and in fact new configuration variables (identified through the
POD procedure) have entered the spatial response.

Herein, we discuss some synthetic aspects concerned with spatio-temporal characterization of the dy-
namics in terms of dimensionality and contributing variables.

The basic periodic response is produced by the coupling of second antisymmetric in-plane (V4) and out-
of-plane (H4) modes (excited in primary resonance, (w*(V4) = 1.94, w*(H4) = 1.95), Rega et al., 1997).

2T-QP(2) CH1 CH2

2T-QP(1)
P1 P2-M2 ( P1
—
2) CH1 CH2
P1 P2-M2 P1

1936
7945
1959
1965
1986

1.994

b) Qo

Fig. 7. Two coexisting schematic bifurcation diagrams (out-of-phase support motion, 1/2-subharmonic resonance): (a) quasiperiodic
scenario and (b) homoclinic scenario.



G. Rega, R. Alaggio | International Journal of Solids and Structures 38 (2001) 2049-2068 2059

Successive involvement of further modes in system dynamics at higher excitation frequencies is justified by
nearly simultaneous proximity of excitation frequency, in a narrow range, to the 1/4-subharmonic reso-
nance of the first torsion-symmetric mode H1T (o*(H1T)=0.48) and of the first symmetric out-of-plane
mode H1 (w*(H1)=0.52), as well as to the 1/2-subharmonic resonance of the first antisymmetric out-
of-plane (H2) and in-plane (V2) modes.

Going inside the aforesaid range, a supercritical Hopf bifurcation (1.880) drives the asymptotic response
onto a 2-torus. The ensuing 2T-QP motion involves (as highlighted by the POD) the two antisymmetric
(V4, H4) and the first torsion-symmetric (H17) modes.

Further increasing the frequency (1.915), the system exhibits, at first, an higher response amplitude
seemingly corresponding to a jump onto an upper frequency-response branch of the same 2T-quasiperiodic
solution, and then (1.945) a Hopf bifurcation to a three-dimensional torus. Transition to the higher di-
mensional manifold looks like being due to the involvement of the first symmetric out-of-plane mode which
drives into the response, further harmonic components responsible for a second incommensurability re-
lationship.

In this case, the POD does not help in identifying the new contribution, since the modal shapes of H1
and H1T are substantially the same except for the occurrence of a torsional component in the latter (Rega
et al., 1997). Their simile prevents the decomposition to distinguish between them in a configuration space
where only vertical and horizontal components of motion are measured and represented: indeed, the mass
rotation around the cable axis is not detected by the transducers.

Inside the nonregular region, the chaotic attractors (CHI and CH2) occurring in two distinguished
ranges have correlation dimension values varying between 3.2 and 3.6 and between 4.1 and 4.8, respectively.
The following exemplifying case (spectrum and Poincaré map in Fig. 8(a) and (b)) is relevant to an attractor
obtained in region CH2.

The involvement of important 1/2-subharmonic components differentiates the CH2 from the CH1 zone.
In particular, the POD identifies the presence of a further configuration variable in the response, where the
first out-of-plane mode H2 (close to its 1/2-subharmonic resonance) can be recognized. The first four
POMs, already sufficient to decompose 89.4% of the power, are reported in Fig. 8(c) for the higher
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Fig. 8. (a) Power spectrum of horizontal component and (b) Poincaré section projection for CH2 motion in the quasiperiodic scenario.
(c) Corresponding first four POMs.
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Table 2
An overview of the motion class characterization®
Attractor Dimension Modes
D(j DS Dg D-T No. Dp
POMs
Out-of-phase support motion — 112 subharmonic resonance quasiperiodic scenario
P1-M2 1 2 1+3 2R 2 5 V4 H4
2T-QPl(a) 2 3+4 2+5 3R 3 (97.8%) 7 V4H4HIT
2T-QP1(b) 2 3+4 2+5 3R 3 (97.0%) 7 V4H4HIT
CH1 32+36 6 4+9 3 (96.1%) 7 V4H4HIT
CH2 4.1+48 1112 S5+11 4 (89.4%) 9 V4H4H1T H2
5(92.5%) 11 V4H4HITH2H3
6 (95.0%) 13 V4H4HIT H2H3V2

#Refer footnote of Table 1.

dimension CH2 attractor. Besides the second antisymmetric H4 and V4 modes (first and second POMs), the
first symmetric (H1) and antisymmetric (H2) out-of-plane modes are also recognizable as those which could
well (linearly) decompose the third and fourth POMs. Further, POMs show the involvement of third out-
of-plane symmetric (H3) and first in-plane antisymmetric (V2) modes, too.

Table 2 summarizes dimensionality informations characterizing the motion classes recognized in the
quasiperiodic scenario to chaos under out-of-phase support motion at 1/2-subharmonic resonance.

It is worth noticing that the first Hopf bifurcation relevant to the torus-breakdown scenario — i.e., the
one bringing the periodic solution (P1-M2) to a (2T-QP1-M3) quasiperiodic motion — is associated with
nearness of the excitation frequency to the 1/4-subharmonic resonance condition of the first torsion-sym-
metric mode H1T. This resonance condition is rather sensitive to variations of the cable mechanical pa-
rameters: this is likely to be the reason why such scenario does not appear in the crossover cable.

3. Homoclinic bifurcation scenario

A scenario involving the global bifurcation of an homoclinic invariant set of a symmetric flow is re-
sponsible for transition to chaos with out-of-phase cable support motion (primary and 1/2-subharmonic
resonance, in the latter case competing with the torus breakdown scenario described in Section 2.2), as well
as with in-phase support motion (1/2-subharmonic resonance).

Homoclinic and heteroclinic orbits play an important role in dynamical systems behavior, and a theo-
retical framework (Glendinning and Sparrow, 1984; Shilnikov et al. 1998) can furnish an interpretative
support to the experimental investigation.

Flows exhibiting homoclinic invariant sets exist at the upper bounds of stability regions of two-com-
ponent periodic ballooning solutions VrHn with increasing frequency. This occurs with both antisymmetric
(n = 2, 4) or symmetric (n = 3, 5) motions — for out-of-phase or in-phase support motion, respectively —
whenever further components are not involved in the response before the bounds are reached. These
ballooning motion classes are excited in primary external resonance conditions, although the frequency
ranges where they occur are nominally labeled as primary (z = 2) or 1/2-subharmonic (n = 3-5) resonance
zones following (Benedettini and Rega, 1997), the overall classification being done with respect to the first
antisymmetric in-plane mode V2.

This scenario is concerned with each frequency zone where the ballooning-type classes of motion are
present, independent of the support motion phase, for the slacker as well as the crossover cable. It shows to
be robust with respect to variations of cable/mass geometric-mechanical parameters and thus it is of
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general interest in the dynamics of the experimental system. Moreover, the bifurcation path relevant to in-
phase support motion case is further enriched by the presence of heteroclinic bifurcation phenomena.

3.1. Out-of-phase support motion, primary and 1/2-subharmonic resonances

The bifurcation paths under out-of-phase support motion, whether relevant to primary or 1/2-subhar-
monic resonance, can be illustrated together due to their simile. In each case, the homoclinic invariant set
manifests itself at the upper edge of the stability zone of an antisymmetric ballooning periodic solution,
labeled VinHn, n = 2, 4.

In each frequency range (see Figs. 4 and 5 in Benedettini and Rega, 1997), the bifurcation analysis has
been performed by varying the frequency of the support motion and keeping its amplitude as constant. The
overall bifurcation path, schematically represented in Fig. 7(b) for the 1/2-subharmonic case, can be
summarized as follows: for growing frequency, the one-modal periodic solution (P1) involving the Vi mode
loses stability bifurcating towards ballooning periodic solutions (P2-M2) involving the Hn mode, too.
Actually, two VrnHn solutions coexist differing only due to clockwise or anticlockwise rotation of the orbit
in the configuration plane (connected with the Vn—Hn phase shift sign) (Rega et al., 1997). For even higher
frequency, the ballooning solution loses stability and the system enters the zone of nonregular response
involving the homoclinic invariant set. Finally, the upper bound of this nonregular zone borders on one-
modal (Vn) periodic response (P1), again.

The noninteger correlation dimension evaluated for the nonregular attractor in this region ranges from a
bit more than 2 to a bit more than 3, and a value of about 0.11 is obtained for the maximum Lyapunov
exponent.

In Fig. 9, a projection (in-plane vertical displacement versus vertical velocity) of a Poincaré map ob-
tained for an exemplifying case in 1/2-subharmonic region is represented together with the relevant power
spectrum.

Due to the nature of the involved phenomenon, the experimental characterization was concerned not
only with the attractor global properties (dimension or strangeness) but also with the structure of the flow:
in particular, presence and features (dimension and stability) of associated invariant sets were investigated.
In fact, the characterization of invariant sets exhibited by the Poincaré section (in %*) of the attractor re-
constructed in R* (the singular value decomposition of the flow showing that four dimensions are sufficient

log(V)
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Fig. 9. (a) Power spectrum of horizontal component and (b) Poincaré map projection for a chaotic motion in the homoclinic scenario
(out-of-phase support motion, 1/2-subharmonic resonance).



2062 G. Rega, R. Alaggio | International Journal of Solids and Structures 38 (2001) 2049-2068

F1 F2

F3

e)

W< HH L=y

Fig. 10. Poincaré sections of the configuration space in the neighborhood of the homoclinic bifurcation. For control parameter values
lower than the critical value uy: (a) two sets of dimension 0 symmetrically arranged, (b) two sets of dimension 1 asymmetric but
symmetrically arranged. For control parameter values higher than the critical value uy: (c) one symmetric set of dimension 1, (d) one
set of dimension 0. Close to the critical value: (e, f) non integer dimension, i.e. chaotic dynamics.

to describe meaningful system dynamics) allows us to describe, in depth, the interesting phenomenon
displayed (Alaggio and Rega, 2000b).

In the neighborhood of the global bifurcation resulting to chaos, the flow looks like being organized by
the instability of a one-dimensional invariant set (a saddle-focus type fixed point on the three-dimensional
Poincaré map) and by the presence of an invariant set of dimension 2 homoclinic to the above mentioned
fixed point. The characterization of the flow structure — which is enriched by the presence of the symmetry
S (x1,x2,x3,%4) = f(—x1, —x2,x3,x4) — allows us to point out (see Fig. 10, relevant to n = 4 case) the presence
on the Poincaré section of the following invariant sets: (i) Two sets of dimension 1 (globally stable, locally
unstable) asymmetric but symmetrically arranged (b), organized by one saddle-focus type fixed point (S-F),
for control parameter values slightly lower than the critical value (homoclinic tangency, p = uy). (i) Two
sets of dimension 0, two focus type fixed points (F;, F,) symmetrically arranged (a), on the same parameter
side but farther away from the critical value (relevant to the two coexisting versions of periodic antisym-
metric ballooning that will bifurcate toward the invariant sets identified at point (i) with growing param-
eter. (iii) One symmetric set of dimension 1 (globally stable, locally unstable) (c), organized by S-F type
fixed point, for parameter values slightly higher than the critical value. (iv) One set of dimension 0, a focus
type fixed point (F3) (d), on the same side but farther away from uy (relevant to a symmetric orbit of
periodic in-plane antisymmetric motion Vn).

Close to the critical value on the two sides of the parameter range, the experimental system exhibits
chaotic dynamics (Fig. 10(e) and (f)), whose higher dimension (D¢ > 3), major robustness and wider range
are obtained for u > uy.

The bifurcation behavior of the model can be set in the paradigm of homoclinic bifurcations as extended
to symmetric flows by Glendinning and Sparrow (1984).
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Fig. 11. First two POMs at (a) primary (n = 2) and (b) 1/2-subharmonic (n = 4) resonance, respectively.

Table 3
An overview of the motion class characterization®
Attractor Dimension Modes
DC Ds Dg D-T No. POMs Dp
Out-of-phase support motion — 112 subharmonic resonance homoclinic scenario
P1-M2 1 2 1+3 2R 2 5 V4 H4
CH 227 -3 4 3+7 2 (96.4%) 5 V4 H4
3« 311 6 4+9 2 (93.8%) S V4 H4
3 (95.7%) 7 V4H4 H2
Out-of-phase support motion — primary resonance homoclinic scenario
P1-M2 1 2 1+3 2R 2 5 V2H2
CH 2.39 4 3+7 2 (94.2%) 5 V2H2

#Refer footnote of Table 1.

When the cable model follows the aforementioned scenario, the chaotic attractors show the lowest
observed dimensionality: indeed, the transition from regular to nonregular behavior happens without in-
creasing the number of involved modes over the two (Vn, Hr) already present in the neighboring regular
zones. The POD of two experimental series (n = 2, 4) corresponding to chaotic attractors gives the results
shown in Fig. 11: more than 94% and 96% of the signal power that belongs to the two POMs (Vn and Hn),
already responsible for the regular ballooning, respectively. Fully developed chaos for 1/2-subharmonic
resonance condition (n =4, D¢ = 3.11) also shows a small contribution from first out-of-plane antisym-
metric H2 mode.

Table 3 summarizes the informations characterizing the motion classes recognized in the homoclinic
bifurcation scenario at 1/2-subharmonic and primary resonance.
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Fig. 12. (a) Symmetric ballooning V5HS in the configuration plane and (b) first two POMs (in-phase support motion, 1/2-subharmonic
resonance).

3.2. In-phase support motion, 1/2-subharmonic resonance

The bifurcation analysis has been performed by varying the frequency of support motion in the range
2.2-2.6 (see Fig. 1 in Benedettini and Rega, 1997). Also in the case of in-phase support motion, 1/2-sub-
harmonic resonance, transition to chaos involves the global bifurcation of an homoclinic invariant set, but
now the scenario is even more enriched by the presence of a further phenomenon of heteroclinic tangency.

The bifurcation path follows the main route already depicted in Section 3.1 starting from a one-modal
response (Vn), bifurcating in a ballooning solution — one of two coexisting (clockwise and counter-clock-
wise) and symmetrically arranged ballooning solutions VrHn, n = 5 — and ending in a region of nonregular
regime in the neighborhood of the global bifurcation.

In Fig. 12, the ballooning motion class is exemplified by means of a projection of its configuration plane
and relevant POMs. The ensuing nonregular dynamics exhibit a class of attractors topologically similar to
those corresponding to the n = 2 and n = 4 cases.

However, an interesting difference seems to occur with respect to the “pure” homoclinic bifurcation
phenomenon of Section 3.1. A second class of nonregular attractors coexists in the overall scenario.
Evolving in parameter space, the fixed points (stable foci), already representative of the two ballooning
periodic solutions VrHn (n = 5), still exhibit the spiraling stable manifold, which adds to the unstable one
in a narrow frequency range. The unstable manifold injects the flow onto the stable manifold of the co-
existing S-F fixed point singled out in the homoclinic scenario (Fig. 10), which in turn reinjects it back onto
the other S-F. This situation is represented in Fig. 13(a)—(c), where the Poincaré section of two coexisting
asymmetric attractors (a, b) and of one symmetric attractor (c) are shown. It configures an heteroclinic
tangency to be further investigated, and produces a second family of attractors again made up of symmetric
and antisymmetric invariant sets following the framework of the main scenario in Section 3.1.

The power spectrum (Fig. 13(d)) holds trace of the time spent by the system in going away from S-F;
(i =1, 2) in the harmonics organized in a quasiperiodic-like structure having ratio near to 3. The signal
power relevant to the first two POMs in chaotic regime (H5: ¢, =89.2%,% = 89.2%; V5: ¢, =
8.6%, 2 = 97.8%) is substantially unaltered with respect to that in Fig. 12(b) (periodic regime) while Table 4
summarizes the usual informations relevant to the motion classes.

4. Summary and discussion
Mechanisms of bifurcation to nonregular motions of an experimental cable/mass system hanging at

sinusoidally in-phase or out-of-phase in-plane moving supports have been investigated. The system exhibits
a rich variety of 2T- and 3T-quasiperiodic responses, chaos ensuing from tori breakdown, phase locking
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Fig. 13. Mixed heteroclinic-homoclinic bifurcation phenomenon: (a, b) Poincaré sections of two coexisting asymmetric attractors and
(c) of one symmetric attractor. (d) Power spectrum.

Table 4
An overview of the motion class characterization®
Attractor Dimension Modes
D¢ Dg Dg D-T No. POMs Dp
In-phase support motion — 1/2-subharmonic resonance
P1 1 2 1+3 1 1 (96.2%) 3 V5
P2-M2 1 2 1+3 2R 2 (97.8%) 5 V5HS5
CHI1 2.30 +2.88 4 3+7 2 (96.8%) 5 V5HS
3 (98.1%) 7 V5H5H4
CH2 3.04 +3.20 6 4-=+9 2 (91.1%) 5 V5HS
3 (98.2%) 7 V5H5H4

#Refer footnote of Table 1.

phenomena, homoclinic and heteroclinic bifurcations, depending on nearness to specific external/internal
resonance conditions in the excitation parameter space.

Reconstructed attractors and underlying manifolds have been studied through a combined use of dif-
ferent techniques of experimental time series analysis, namely, delay embedding and POD techniques,
focused at identifying mechanically meaningful classes of motion and actual associated mechanisms of
transition to chaos. The embedding procedure allowed reliable estimates of the system dimensionality, with
indications on the actual number of dof taking meaningful part in system’s nonlinear dynamics. In turn, the
POD procedure allowed us to characterize nonlinear responses not only in terms of the number of involved
dof, but also with respect to their mechanical meaning. In particular, for each new dimension exhibited by
the dynamics, a new experimental configuration variable has been identified as the one responsible for
bifurcation and ensuing steady regime. This has been made in a number of meaningful transition regions
from regular to nonregular responses.
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Systematic comparison was carried out between the upper bound limit (2[D¢] + 1) for the embedding
dimension given by the Mané theorem (Mané, 1981), and the phase space dimension (Dp) in RN evaluated,
using POD results, as two times the number of identified POMs plus 1 (the time). The results obtained show

(i) agreement between the two dimensionality measures (Dp = 2[Dc] + 1) for regular motion on ergodic
tori (Pm, n'T-QPm),

(ii) interesting dimensional features (Dp > 2[Dc] + 1), when the motion develops on a partially or totally
resonant tori (Pm-Mk, nT-QPm-Mk),

(iii) agreement (Dp = 2[Dc]+ 1) for nonregular responses, provided a minimal number of POMs is
included.

Though the system is potentially infinite-dimensional, its complex response was actually seen to be low-
dimensional in most cases. Indeed, more than 90% of nonregular signal power is representable by using up
to three or four POMs among those already responsible for the higher-dimensional coupled regular dy-
namics. In addition, an overall heuristic correspondence between the main POMs and the main linear
physical modes of the system was highlighted.

These results are of notable interest to the aim of associating to each class of complex response of the
system, a class of reduced (and minimal) theoretical models able to describe the complex dynamics of the
experimental system. Within the framework of a reduction (discretization) procedure, these can specifically
be built in each region of control parameter space either by using just the identified POMs, or getting hints
from them by projecting infinite-dimensional dynamics on the known sub-optimal basis of corresponding
linear modes.

A summary of results concerned with bifurcation to chaos scenarios and involved cable experimental
modes is given in Table 5, making reference to features of support motion and external resonance con-
dition, as well as to cable dynamic properties.

(a) Quasiperiodic transition to chaos via breakdown of regular dynamics on 3D-tori is robust for the
slacker cable at primary resonance under in-phase support motion. This scenario looks rich and involved
due to complicated interaction between internally resonant and nonresonant modes. Many classes of
regular and nonregular response differing with respect to topological dimension, underlying manifold, and
increasing number of configuration variables, have been highlighted. They involve well identified experi-
mental eigenfunctions constituting the optimal basis for decomposing the spatio-temporal flow. Specifi-
cally, the first antisymmetric out-of-plane mode (H2) plays the decisive role as regards transition to chaos.
This suggests a three-mode mathematical model including V1, H1 and H2 — like the one in (Benedettini

Table 5
Summary of nonregular regime zones, corresponding transition scenarios, and involved configuration variables — transition to non-
regular dynamics

Cable Support motion
In-phase external resonance condition In opposition of phase external resonance condition
Primary Subh. 1/2 Primary Subh. 1/2
Scenario Modes Scenario Modes Scenario Modes Scenario Modes
Slacker QP V1HI HOM V5HS HOM V2H2 HOM V4 H4*
H2 (HET) V3H3 (QP)
Crossover No chaos HOM V5HS HOM V2H2 HOM V4 H4

V3H3

*V4H4HIT H2.
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et al., 1995), containing also a fourth mode, here unnecessary — could be sufficient to capture the important
nonregular dynamics of the system in the considered frequency range.

It is worth noticing how, with the same excitation conditions, the quasiperiodic scenario to chaos does
not occur for the crossover cable. Indeed, in this case, the existence of a nearly perfect 2:2:1:2 internal
resonance involving all first four in-plane and out-of-plane, symmetric and antisymmetric, modes makes
periodic coupled responses more robust, while preventing quasiperiodicity and chaos from occurrence.

For the slacker cable at 1/2-subharmonic resonance under out-of-phase motion, the quasiperiodic sce-
nario competes with the homoclinic bifurcation scenario. Herein, the main role in transition to chaos is
played by the first torsional symmetric out-of-plane mode (H1T).

(b) The homoclinic bifurcation scenario to chaos is associated with passage from ballooning-type periodic
motion to substantially unimodal motion. It is even more general in the dynamics of the experimental
model. Indeed, it is definitely robust near primary resonances of 1:1 internally resonant VrHn-type couples
of modes (n = 2-5; n = odd, symmetric; n = even, antisymmetric), for both the slacker and the crossover
cable.

In particular, strong evidence is obtained about the importance of (i) first (second) in-plane and out-of-
plane antisymmetric modes at regions of primary (1/2-subharmonic) nominal resonance of V1, when out-
of-phase support motion is considered; (ii) higher-order in-plane and out-of-plane symmetric modes, when
in-phase support motion at 1/2-subharmonic nominal resonance of V1 is considered. In all cases, hints are
obtained about possible construction of 2-mode mathematical models accounting for V2, H2 (V4, H4) in
the former case, and for V5, H5 or V3, H3 in the latter case. Of course, in defining such mathematical
models, account should also be taken of the likely need to include the basic symmetric in-plane mode (V1),
too: indeed, this cannot be omitted, e.g., in the case of antisymmetric models, since antisymmetric modes
cannot actually be excited in even regularly coupled motion unless a cable dynamic tension mechanism be
properly induced by any symmetric mode (Rega et al., 1997).

Finally, it is worth observing that the homoclinic bifurcation phenomenon is even further enriched by
the presence of heteroclinic bifurcation for the slacker cable at 1/2-subharmonic resonance under in-phase
motion.
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